

Innovative Ion Exchange Solutions for Small Community Nitrate Treatment Systems

Bill Schwartz, P.E. Envirogen Technologies, Inc.

Nitrate Treatment Technology Workshop

5 September 2013

Topics we will cover

- Small system design challenges
 - Process considerations
 - Operational issues
- MinX product line
 - Systems in operation w/ performance summary
 - Nitrate Pilot results
- Case Study- CAPEX and OPEX costs
- Options for other contaminants

Small system design challenges

- Process considerations
 - Flow Rate, Peak/ Average vs. Reality
 - Influent WQ variability
 - System Utilization/ Availability
 - Treatment Goal, System vs. Overall
 - Waste Rate- 40% to 60% of OPEX

Small System Design Challenges

- Operational issues
 - Resources
 - Personnel
 - Financial
 - Infrastructure limits
 - Well pump and controls
 - Facility
 - Utilities
- Long term operation
 - Technical support
 - Process improvements
 - Changing regulations

Envirogen IX Systems-Smaller Flows

- MinXTM
 - 20- 500 GPM
 - Regenerable IX system
 - Simplified SimPACK design for smaller applications
 - Indoor applications i.e., well pump houses
- MinFlex™
 - 5-25 GPM capacity
 - Regenerable iX system
 - Low utilization, limited process control
- FlexSorb™
 - Classic service exchange business
 - Typically less than 100 GP
 - High BV applications
 - Intermittent use
- CleanPoint™

Regenerable Ion Exchange System Design

Recommended design basis- MinX

- Counter current regeneration- low NO₃ leakage
- Staggered (multiple) iX vessels, N+1 (N in service) Internal Blending
- Two step brining process- Enhanced salt efficiency
- Water and brine recovery- minimize waste

Downflow - Co-current Regeneration

Packed Bed Counter-current Regeneration

Plug flow in both directions maintains wave front

Single Bed Breakthrough

Staggered Bed Design- N=3

80.0 36.0 445			
445			
2			
3			
2.2			
8.3333333			
1	2	3	4
445	296.6667	148.3333	0
52.16804	49.13996	6.24712	1.61758
35.85			
l Met			
0.49%			
'es			
	8.3333333 1 445 52.16804 35.85 I Met	2.2 8.3333333 1 2 445 296.6667 52.16804 49.13996 35.85 I Met	2.2 8.3333333 1 2 3 445 296.6667 148.3333 52.16804 49.13996 6.24712 35.85 I Met

MinX Process Controller

MinX Alarm Page

MinX System's Summary

- WI installation 1- 2010 Startup
 - Flow 350 GPM
 - NO3-N, Influent- 10.3 mg/L, Effluent- 3.0 mg/L
 - Waste Rate 0.51%
- WI installation 2- 2011 Startup
 - Flow 265 GPM
 - Arsenic, Influent- 12 $\mu g/L$, Effluent- $\langle 4 \mu g/L \rangle$
 - Waste Rate 0.08%
- KS Installation- 2013 Startup (300 GPM- N03)
- Lake Morena Oak Shores MWC- Pilot phase
 - Design Flow 50 GPM

Lake Morena's Oak Shores MWC

- 50 GPM Capacity
 - 200 connection
 - 5 wells, 5 -18 GPM capacity
 - Influent NO3-N, 12 23 mg/L
 - Well #5- Uranium at 40 pCi/L ± 40 pCi/L
 - Treatment Goal, <5 mg/L NO3-N
- Pilot Test
 - 4 week test
 - Goals
 - NO3-N < 5 mg/L
 - Waste rate <0.5% for Nitrate feed 9 mg/L
 - Waste rate <1.2% for Nitrate feed between 9 and 25 mg/L

Pilot Test Results

Pilot Test Results

Pilot Test Results

T-6 Pilot Trailer

Cost Summary- Case Study

- MinX capable of treating 125 GPM
 - No bypass required
 - -4 X Ø30" with 42" of media depth
 - N+1, 3 vessels on line, 1 vessel in regeneration/ standby
 - Staggered bed design, counter current regeneration
 - Brine and water recovery
 - NO3 analyzer, Post chlorination
- Process Conditions
 - BV Adsorption Set Point- 475 BV
 - Salt dose- 8 lb/ cf
 - Waste Rate- 0.48%, 12% NaCl concentration
 - Salt demand- 2.4 lb/ Kgal processed

Cost Summary- Case Study (Con't)

- Cost basis
 - Salt \$125/ ton delivered
 - Waste Disposal \$0.15/ gallon
 - Bag Filters \$3/ bag
 - Labor \$65/ hour, 0/M
- Exclusions
 - Permitting costs
 - SCADA system

Cost Summary- Case Study

Description	Range
CAPEX	\$375K - \$438K
Equipment	\$150K - \$175K
Installation*	\$150K - \$175K
Engineering*	\$75K - \$88K
OPEX (Per MG treated)	\$918 - \$1,040

^{*} Costs based on TDP capital factors

CleanPoint POE Treatment Systems

- Flow rate- 5 to 30 GPM
- Single use replaceable resin
 Cr VI, As, Cl04, U
- Lead-lag configuration
- PLC control
- 500 gallon internal storage tank
- Pre-filtration, post chlorination unit
- Optional RF telemetry package

CleanPoint 10C (Flexsorb)

Conclusions

- MinX provides, reliable, cost effective contaminant (ionic species) treatment for smaller feed flows
- Operational factors are critical in the treatment decision process
- Regenerable resin (i.e. NO_3 and As) systems— Waste disposal is largest operation costs
- Replaceable resin systems—Good for small flow rates, intermittent use, and contaminants with long bed life.

Bschwartz@envirogen.com (877)312-8950, X120

How we do it...

SimPACK™ Ion Exchange

Advantages of SimPACK multi-bed vs. conventional ion exchange

- Flows greater than 300 gpm
- Off-site regeneration is not feasible/desired and the customer wants/needs to minimize the waste volume (0.05%- 2% vs. 2% - 6% for competitors).
- Patented counter-current, cascading, two-vessel regeneration process.
- Small footprint, rapid deployment
- Reduction in salt consumption

Three-Step Process

Treat (exhaust)
Regenerate (on-site)
Rinse

SimPACK Design

Resin is regenerated on sit

Long-life resins

The regeneration process is very rapid

• Multiple contaminants can be removed— "Long Term" View

Robust and proven technology

Containerized SimPACK™ System

Process Control

SimPACK™ Ion Exchange

Multi-bed design generates lower waste

- Staggered bed design
- Maximize bed volumes
- Consistent blending design
- Minimize brine waste
- Reuse of final rinse water
- Data logging capabilities
- Built-in redundancy
- PLC process controlled
- 24/7 Telemetry

What we treat...

Nitrate Removal Systems

2,000-GPM Nitrate Removal System - California

What we treat...

Uranium Removal Systems

1,000-GPM Uranium Removal System - California

What we treat...

Perchlorate Removal Systems

System - California

1,000-GPM Perchlorate Removal System - California

Laboratory & Pilot Capabilities

- Current staff has 50+ years of industrial chemistry, laboratory and pilot experience
- Analytical equipment includes Graphite Furnace AA, Flame AA and Ion Chromatograph
- Wet chemistry capabilities include standard procedures and specific tests that relate to ion exchange evaluations
- Small-scale testing includes glass column media evaluations, precipitation and filtration tests

- Media and ion exchange evaluation using columns to several inches in diameter
- Kinetic column testing for media and ion exchange evaluations
- Testing of ion exchange resins and specially formulated selective resins and media
- Cross flow filtration pilots include ceramic, sintered metal and polymeric membranes
- Pilot RO system with 2.5-inch vessels
 - Biological reactor pilots for on-site validation

Large-Scale Media Pilot

CleanPoint 10C P&ID

